¿Cubos o rombos? Ilusión óptica
Fíjate en la siguiente imagen. ¿Ves unos bloques que se mueven o un conjunto de rombos?
Si ves los cubos, ¿hacia dónde están orientados? ¿hacia arriba o hacia abajo?
Escrito por Administrador en . Publicado en Actividades y juegos.
Fíjate en la siguiente imagen. ¿Ves unos bloques que se mueven o un conjunto de rombos?
Si ves los cubos, ¿hacia dónde están orientados? ¿hacia arriba o hacia abajo?
Escrito por Administrador en . Publicado en Actividades y juegos.
Siempre que conozcamos una función, tenemos la posibilidad de crear multitud de funciones nuevas a partir de ella, mediante unas sencillas transformaciones que denominamos «elementales».
A partir de la gráfica de la función y la nueva, podemos deducir fácilmente qué cambios debemos hacer en la expresión algebraica para obtener esa transformación, y lo que es más sorprendente:
Las transformaciones que vamos a investigar son:
Investigamos: nuestra primera tarea de investigación será sobre las simetrías.
Investigamos: nuestra segunda tarea de investigación es sobre la relación que hay entre las transformaciones elementales de las funciones y los cambios que hacemos en sus expresiones algebraicas. Concretamente, estudiaremos estos posibles cambios:
Escrito por Administrador en . Publicado en GeoGebra.
Los sólidos platónicos son los únicos 5 poliedros regulares {tip title=»Figura convexa» content=»Cuando el segmento que une dos puntos de la figura está contenido en ella, para cualquier par de puntos que elijamos de esa figura. Por ejemplo, un cubo es convexo, pero las figuras con forma de estrella no son convexas (los segmentos que unen los puntos de los extremos de las estrellas pasan por fuera de ella).»}convexos{/tip} que existen. Esto es, los únicos poliedros convexos cuyas caras son polígonos regulares iguales y los ángulos que forman las caras entre sí también son iguales.
El hecho de cumplir esas condiciones de regularidad hace que los poliedros regulares tengan tantas propiedades que desde siempre han fascinado a quienes los estudian. Una de las más bonitas y llamativas son sus simetrías.
Escrito por Administrador en . Publicado en Otros.
Una vez finalizado el plazo para las votaciones para el Carnaval de Matemáticas, ¡¡ya tenemos el recuento de resultados!!
Escrito por Administrador en . Publicado en Otros.
En la edición 11.4 del Carnaval de Matemáticas «Matemáticas en la desescalada», hemos recibido las siguientes contribuciones.
¡Muchas gracias a todos los participantes! ¡¡Son 22 contribuciones de altísimo nivel!!